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Abstract. This paper studies the free vibrations of finite, closed, circular cylindrical shells, made of one or
more monoclinic layers. The study is based on the Love-type version of a unified shear-deformable shell theory.
This theory enables the trial and testing of different through-thickness transverse shear-strain distributions and,
among them, strain distributions that do not involve the undesirable implications of the transverse-shear correction
factors. For flexural vibrations, the analytical solution of the corresponding axisymmetric solution is obtained,
as a particular case, when it is assumed that the free-vibration pattern is independent of the circumferential co-
ordinate parameter. If the appropriate material simplifications are employed, the present analysis yields, as a further
particular case, the corresponding free-vibration solution that has already been presented elsewhere for cross-ply
laminated cylindrical shells.
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1. Introduction

The subject of the mechanics of composite materials and structures has experienced tremend-
ous growth in the last three decades. Due to the increasing use of light-weight, high-strength
and high-stiffness materials in the aerospace industry, as well as in mechanical and marine
applications, the study and the understanding of the behaviour of composite structural ele-
ments subjected to static, dynamic or thermal loading is of profound importance. With the
fast development of powerful computers and relevant computer codes, the analyst is given
today an opportunity to achieve this by using advanced mathematical modelling and applied-
mathematics methods to an extent that was unknown a few decades ago. Difficult problems
concerning, for instance, the static or the dynamic behaviour of shell-type structural elements
made of highly reinforced layered materials can now be tackled with a relative ease, by means
of old or new mathematical models and methods of variable difficulty.

Composite cylindrical shells are among the most frequently used structural elements. As a
consequence, the existing literature on the dynamic analysis of circular cylindrical shells and
open panels is impressively extensive (see, for instance, references [1, pp. 185–218], [2–5]).
The vast majority of the relevant analytical studies dealt, however, with thin or moderately
thick cylindrical shells, the material anisotropy of which is no more complicated than that of
the special orthotropy (material axes of orthotropy coincide with the axes of the orthogonal
curvilinear co-ordinate system [6, pp. 31–59]).
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As far as the free vibrations of closed and finite circular cylindrical shells are concerned,
the current developments can be considered satisfactory only for shells made of one or more
isotropic, transversely isotropic or specially orthotropic layers; namely, up to the material
arrangement of a cross-ply laminate. The latest relevant developments [7–11], [12, pp. 48–
51] make further clear that, regardless of the classical or the shear deformable shell theory
employed, the state space concept can provide an analytical solution to such problems for any
set of boundary conditions imposed on the two shell edges. These studies [7–11], [12, pp. 48–
51], as well as numerous others that can be found through them, contain an extensive number
of particular example applications and discuss a considerable amount of associated numerical
results. On the contrary, there is comparatively little done [13–17] for the understanding of
the dynamic behaviour of closed cylindrical shells made of one or more generally anisotropic,
monoclinic or even generally orthotropic layers (angle-ply laminates).

Sun and Whitney [13] and Soldatos and Ye [14] studied the axisymmetric vibrations of
finite composite cylindrical shells made of generally orthotropic or monoclinic layers. In
[13], which appears to be the first study in the subject, the model employed was based on
an advanced two-dimensional shell theory that takes both transverse shear and transverse
normal deformation effects into consideration. As is well documented and widely recognised,
consideration of the transverse deformation effects (particularly those accounting for trans-
verse shear) is very important when dealing with vibrations of highly reinforced composite
structural elements. The higher-order effects involved in [13] were modelled, however, in a
rather unrealistic manner. Hence, the resulted shell theory made use of an excessive number of
shear correction factors (six), the accurate determination of which is not possible. The solution
of the axisymmetric vibration problem considered in [13] was obtained by the represention of
the unknown displacement functions in a relatively simple trigonometric from, which satisfies
a certain type of simply supported edge boundary conditions.

Most recently, Soldatos and Ye [14] considered and studied the same essentially axisym-
metric vibration problem, together with its static equivalent. The model employed in [14] was
based, however, on entirely three-dimensional equations of elasticity, a most accurate solu-
tion of which was obtained by the use of a successive approximation method. This solution
was obtained for a set of edge boundary conditions that can essentially be regarded as the
point-by-point equivalent of the simply supported edge conditions considered in [13].

Vanderpool and Bert [15] studied the flexural (non-axisymmetric) free vibrations of closed,
homogeneous (single-layered) monoclinic cylindrical shells, the edges of which are subjec-
ted to different sets of boundary conditions. Their model was based on a uniform shear-
deformable shell theory, which makes use of three shear-correction factors. For the solution of
the corresponding differential equations of motion they used a so-called semi-inverse analyt-
ical method suggested by Flügge [18, pp. 222–225] and demonstrated by Forsberg [19] for thin
isotropic cylindrical shells. It should be noted that this method is essentially equivalent with
employing the state space concept [7–12] on the same set of differential equations. Hence,
it is applicable regardless of the particular set of edge boundary conditions involved. The
solution obtained in [15] was used for the derivation of relatively few natural frequencies of
homogeneous monoclinic shells having both their edges free of external tractions. These were,
however, used for a comparison with corresponding natural frequencies that were identified
experimentally.

For the flexural vibration problem of closed angle-ply laminated cylindrical shells, Sold-
atos [16] made use of the so-called parabolic shear-deformable shell theory that avoids the
undesirable implications of the transverse shear-correction factors. Both shell edges were
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assumed as being subjected to a certain type of simple supports. For that type of edge boundary
conditions, the solution of the differential equations of motion was obtained upon application
of Galerkins’s method. It should be further mentioned that the so-called helical modal pattern
approach [20, 21] was also used in [16]. This leads to an exact closed-form solution of the
equations of motion, which, however, cannot satisfy any set of edge boundary conditions. It
can therefore be used only for the study of the propagation of harmonic waves in angle-ply
laminated cylinders of infinite extent.

Narita et al. [17] studied the flexural (non-axisymmetric) free vibrations of closed, lam-
inated composite cylindrical shells made of different monoclinic layers. Although the model
was only based on a second approximation classical shell theory of the Flügge-type [18], the
vibration solution achieved in [17] is applicable regardless of the particular set of the edge
boundary conditions employed. In more detail, all three unknown displacement functions are
expressed in appropriate power series of the middle-surface co-ordinate parameters and the
unknown constant coefficients involved are determined upon application of the Ritz method
on the corresponding energy functional. Moreover, a substantial amount of numerical results
was presented and discussed in [17], which, from that point of view, appears to be the most
complete study that has appeared so far in its subject.

This paper studies both the axisymmetric and the flexural free vibrations of finite, closed,
circular cylindrical shells, made of one or more monoclinical layers. The study is based on the
Love-type version of the unified shear-deformable shell theory presented in [22]. This theory
enables the trial and testing of different through-thickness transverse shear-strain distributions
and, among them, strain distributions that do not involve the undesirable implications of
the transverse sher correction factors. For flexural vibrations, the analytical solution of the
corresponding equations of motion is obtained on the basis of the state space concept [7–
12]. Hence, it is applicable regardless of the boundary conditions imposed on the shell edges.
The corresponding axisymmetric solution can then be obtained, as a particular case, when it
is assumed that the free vibration pattern is independent of the circumferential co-ordinate
parameter.

2. Theory

Adopting the usual notation, we denote withL, R andh the length, the middle-surface radius
and the thickness, respectively, of the closed cylindrical shell considered. The axial, the cir-
cumferential and the transverse to the middle-surface co-ordinate parameters are denoted with
x, s andz, respectively, and are such that,

06 x 6 L, 06 s 6 2πR, −h/26 z 6 h/2. (1)

The corresponding displacement components are denoted withU , V andW and are functions
of the spatial co-ordinates and the time,t . The shell is assumed as made of an arbitrary number,
sayN , of monoclinic elastic layers. Hence, the stress state in itskth layer, counting from the
inner to the outer layer, is governed by the following form of the generalised Hooke’s law
(k = 1,2, . . . , N):
σ (k)x

σ (k)s

τ (k)xs

 =

Q
(k)
11 Q

(k)
12 Q

(k)
16

Q
(k)
12 Q

(k)
22 Q

(k)
26

Q
(k)
16 Q

(k)
26 Q

(k)
66



εx

εs

γxs

 ,
[
τ (k)sz

τ (k)xz

]
=
[
Q
(k)
44 Q

(k)
45

Q
(k)
45 Q

(k)
55

][
γsz

γxz

]
, (2)



214 T. Timarci and K. P. Soldatos

whereQ(k)
ij are the well-known reduced elastic stiffnesses [6]. It should be noted that the

material arrangement of a cross-ply laminated cylinder is described with a particular form of
Equation (2), namelyQ(k)

16 = Q(k)
26 = Q(k)

45 = 0. It should be further made clear that the ma-
terial arrangement of a so-called angle-ply laminate (a laminate made of generally orthotropic
layers [6]) is also a particular case of the arrangement described by (2). In what follows,
however, it is convenient to occasionally associate with (2) the term ‘angle-ply laminate’,
despite that Equation (2) represents a more general material arrangement.

The formulation of the unified shear deformable shell theory presented in [22] starts with
the following displacement approximation:

U(x, s, z; t) = u(x, s; t) − zw,x +81(z)u1(x, s; t),

V (x, s, z; t) = (1+ z/R)v(x, s; t)− zw,s +82(z)v1(x, s; t), (3)

W(x, s, z; t) = w(x, s; t).

Hereu, v, w, u1 andv1 are the five unknown displacement functions (degrees of freedom),
while the shape functions81(z) and82(z) are to be specifieda posteriori. For Love-type shell
approximations, the displacement model (3) yields the following nonzero strain components:

εx = u,x − zw,xx +81(z)u1,x,

εs = (1+ z/R)v,s − zw,ss +82(z)v1,s + w/R,

γsz = 8′2v1, (4)

γxz = 8′1u1,

γxs = u,s + v,x + z(−2w,xs + v,x/R)+81u1,s +82v1,x,

where a prime denotes ordinary differentiation with respect toz. It becomes therefore clear
that, through their derivatives, thea posteriorispecified functions81(z) and82(z) will de-
termine the through-the-thickness trial distribution of the transverse shear strains.

The force and moment resultants of the theory are defined according to,
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and, after Equations (2), they yield the following constitutive equations:

Nx

Ns

Nxs

Mx

Ms

Mxs

Ma
x

Ma
s

Ma
xs

Ma
sx



=



A11 A12 A16 B11 B12 B16 B111 B122 B161 B162

A12 A22 A26 B12 B22 B26 B121 B222 B261 B262

A16 A26 A66 B16 B26 B66 B161 B262 B661 B662

B11 B12 B16 D11 D12 D16 D111 D122 D161 D162

B12 B22 B26 D12 D22 D26 D121 D222 D261 D262

B16 B26 B66 D16 D26 D66 D161 D262 D661 D662

B111 B121 B161 D111 D121 D161 D1111 D1212 D1611 D1612

B122 B222 B262 D122 D222 D262 D1212 D2222 D2612 D2622

B161 B261 B661 D161 D261 D661 D1611 D2612 D6611 D6612

B162 B262 B662 D162 D262 D662 D1612 D2622 D6612 D6622



×



u,x

v,s + w
R

u,s + v,x
−w,xx

−w,ss + v,s
R

−2w,xs + v,x
R

u1,x

v1,s

u1,s

v1,x



,

[
Qa
s

Qa
x

]
=
[
A4422 A4512

A4512 A5511

][
v1

u1

]
. (6)

Here, the appearing rigidities are defined as follows:
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with their indices taking appropriate integer values.
The five variationally consistent equations of motion of the theory, given in terms of the

force and moment resultants (5), are as follows [11, 22]:

Nx,x +Nxs,s = I1,
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Nxs,x +Ns,s + 1

R
(Ms,s +Mxs,x) = I2,

− 1

R
Ns +Mx,xx + (Mxs +Msx),xs +Ms,ss = I3, (8)

Ma
x,x +Ma

xs,s −Qa
x = I4,

Ma
sx,x +Ma

s,s −Qa
s = I5,

where the appearing terms are defined according to,

I1 = (ρ0u− ρ1w,x + ρ11
0 u1),t t ,

I2 = {[ρ0+ (2ρ1+ ρ2/R)/R]v + (ρ1− ρ2/R)w,s + (ρ21
0 + ρ21

1 /R)v1},t t ,
I3 = {ρ0w − (ρ1− ρ2/R)v,s − ρ2(w,xx + w,ss)+ ρ1u,x + ρ11

1 u1,x + ρ21
1 v1,s},t t , (9)

I4 = (ρ11
0 u− ρ21

1 w,x + ρ12
0 u1),t t ,

I5 = {(ρ21
0 + ρ21

1 /R)v − ρ21
1 w,s + ρ22

0 v1},t t ,
and

ρi =
∫ h/2

−h/2
ρzi dz, (i = 0,1,2)

ρlmi =
∫ h/2

−h/2
ρzi8m

l dz, (i = 0,1; l, m = 1,2).

(10)

Upon inserting Equations (6) and (9) into the equations of motion (8), one finally obtains
five Navier-type partial differential equations of motion, in terms of the five main unknown
displacement functions. These can be represented in the following differential eigenvalue
form:

[L]{δ} = {0}, {δ}T = {u, v,w, u1, v1}, (11)

where[L] is a 5×5 matrix of partial differential operators, the components of which are given
in Appendix 1.

In the next section, Equations (11) are solved for the flexural free vibrations of angle-ply
laminated cylindrical shells subjected to any set of variationally consistent edge boundary
conditions. All sets of these boundary conditions that can possibly be applied on either of the
two shell edges(x = 0, L) are given as follows [11, 22]:

u or Nx prescribed,

v or Nxs +Mxs/R prescribed,

w or Mx,x +Mxs,s prescribed,

w,x or Mx prescribed,

u1 or Ma
x prescribed,

v1 or Ma
xs prescribed,

(12)
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and their number (six) makes clear that the set of the Navier-type partial differential equations
(11) is of the twelfth order.

3. Flexural vibrations of angle-ply laminated cylindrical shells

For free flexural vibrations of angle-ply laminated circular cylindrical shells, the five unknown
displacement functions are expressed in the following form:

u(x, s; t) = cos(ωt)[uI (x) sin(ns/R)+ uII (x) cos(ns/R)],
v(x, s; t) = cos(ωt)[vI (x) sin(ns/R)+ vII (x) cos(ns/R)],
w(x, s; t) = cos(ωt)[wI(x) sin(ns/R)+ wII (x) cos(ns/R)],
u1(x, s; t) = cos(ωt)[uI1(x) sin(ns/R)+ uII1 (x) cos(ns/R)],
v1(x, s; t) = cos(ωt)[vI1(x) sin(ns/R)+ uII1 (x) cos(ns/R)],

(13)

whereω is an unknown natural frequency of vibration and the integer numbern is the circum-
ferential full-wave number. Each of these representations can be regarded as a single harmonic
in the Fourier-series expansion of the corresponding displacement component around the
shell circumference. Thex-dependent parts can be regarded as the unknown coefficients in
those Fourier-series expansions; they are the ten main unknown functions of the problem con-
sidered. On the other hand, thes-dependent parts enable the satisfaction of all the periodicity
requirements that should be satisfied around the circumference of the closed cylindrical shell
considered.

Upon inserting expressions (13) into Equations (11) and, then, collecting together the
coefficients of the sine and the cosine terms, one obtains the two coupled sets (B1) and
(B2) of ordinary differential equations with respect to the axial co-ordinate parameter,x (see
Appendix 2).

The coupled sets of the differential equations (B1) and (B2) are next solved on the basis of
the state space concept. To this end, the following transformations are employed:

uI = Z1, uI,x = Z2, vI = Z3, vI,x = Z4,

wI = Z5, wI,x = Z6, wI,xx = Z7, wI,xxx = Z8,

uI1 = Z9, uI1,x = Z10, vI1 = Z11, vI1,x = Z12,

uII = Z13 uII,x = Z14, vII = Z15, vII,x = Z16,

wII = Z17, wII,x = Z18, wII,xx = Z19, wII,xxx = Z20,

uII1 = Z21 uII1,x = Z22, vII1 = Z23, vII1,x = Z24.

(14)

After a considerable amount of algebra [12], these transformations bring Equations (B1) and
(B2) into the following matrix form:

{Z′} = [K]{Z}. (15)

Moreover, the appearing 24× 24 matrix[K] is obtained in the following form:

[K] =
[
T Y

−Y T

]
, (16)
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where the nonzero elements of the 12× 12 submatrices[T ] and [Y ] are given explicitly in
[12] and are dependent on the unknown natural frequencyω. It should be mentioned that in
the particular case of cylinders made of one or more specially orthotropic layers, all elements
of [Y ] become zero, while[T ] coincides with the corresponding 12× 12[K]-matrix obtained
in [22]. This makes it further clear that the study presented in [22] is a particular case of the
present analysis.

In the case that the matrix[K] has twenty four distinct eigenvaluesλi(i = 1,2, . . . ,24),
the solution of Equation (15) can be written according to,

{Z} = e[K]x{Z0}, e[K]x = [Q][diag(eλix)][Q]−1, (17)

where{Z0} is a column vector containing the twenty four arbitrary constants of integration
and,

[Q] = [r1, r2, . . . , r24], (18)

is a 24× 24 matrix containing the corresponding eigenvectors of[K]. Hence, by denoting
{c} = [Q]−1{Z0}, we can alternatively express the solution (17) as,

{Z} =
24∑
i=1

cie
λix . (19)

The appearing arbitrary constant will be determined when a set of boundary conditions will
be imposed on the shell edges.

In this paper the following sets of simply supported(S) and clamped(C) boundary condi-
tions will be imposed on the two shell edges(x = 0, L):

S: Nx = v = w = Mx = Ma
x = v1 = 0,

C: u = v = w = w,x = u1 = v1 = 0.
(20)

If either of these homogeneous sets of boundary conditions are used, the solutions (19) yields
twenty four simultaneous homogeneous linear algebraic equations, which can be written in
the following form:

[D]{c} = {0}. (21)

Hence, the natural frequencies of vibration are determined to be those values ofω that nullify
the determinant of the matrix[D]. This can be achieved when this determinant is treated as
a function, ofω, the roots of which can be sought by standard numerical analysis methods.
To this end, all results presented in Section 5, below, were obtained by standard numerical
routines of the NAG library associated, appropriately, to a relevant FORTRAN computer
programme.

4. Axisymmetric vibrations of angle-ply laminated cylindrical shells

The axisymmetric free vibrations of circular cylindrical shells are defined as those such vi-
brations whose pattern is independent of the circumferential co-ordinate parameter,s [4, 13,
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14]. Hence, when all the terms that involve differentials with respect tos are dropped, the
formulation of this axisymmetric vibration problem is obtained as a particular case of the
formulation presented in Section 2. It is of interest to note that the fifth, the eighth and the
ninth elements of the column vector that appears in the right-hand side of the constitutive
Equation (6a) are consequently dropped. Hence, the fifth, the eighth and the ninth columns
should be removed from the appearing rigidities matrix, which becomes therefore a 10× 7
matrix.

In the particular case of an isotropic, an orthotropic or a cross-ply laminated cylinder,
this simplification of axially symmetric motions results in the uncoupling of the equations
that govern the longitudinal and the torsional vibrations (see, for instance, reference [4]).
Hence, the two problems occur as being physically uncoupled and are studied separately, by
the solution of two separate sets of differential equations. In more detail, the longitudinal
vibrations are described by a set of three Navier-type differential equations, with main un-
knowns the displacement componentsu,w andu1, while the torsional vibrations are described
by a corresponding set of two equations, with main unknowns the displacement components
v andv1. In the present case, however, the monoclinic constitution of the layers has caused
the coupling of the longitudinal and the torsional motions. Hence, despite the axisymmetric
vibrations simplification, all five Navier-type equations of motion remain coupled and should
be solved simultaneously. Their solution can, however, be obtained as a particular case of
the flexural vibration solution presented in the preceding section. Moreover, the fact that the
above mentioned classes of cylindrical-shell vibrations are obtained as particular cases of the
present analysis assisted the authors substantially in checking and verifying the correctness of
the algebra involved. In the same context, the present axisymmetric vibration solution assisted
in checking the correctness of the algebra involved in the case of the most general flexural
vibrations discussed in Section 3.

Defining the axisymmetric vibrations of cylindrical shells as being independent of the
circumferential co-ordinate parameter is essentially equivalent with setting the circumferential
wave number of the flexural vibrations,n, equal to zero. As a result, the sine terms are dropped
in the displacement model (13), the spatial part of which involves finally only five unknown
functions of the axial co-ordinate parameter,x. These are essentially the ones denoted with a
superscriptII . With a 90◦ rotation of the co-ordinate origin, around the shell circumference
(the equivalent transformation iss → s − Rπ/2), the functions denoted with a superscriptI

could be employed as the five main unknowns of the problem. Hence, the superscript becomes
redundant and should be dropped from the unknown displacement function.

Upon inserting such a displacement model into the axisymmetric version of the Equa-
tions (11), one obtains a set of five ordinary differential equations with respect to the axial
co-ordinate parameter,x. This can alternatively be obtained as a particular case of either
Equations (A4a) or Equations (A4b) (see Appendix) upon (i) dropping all thePi coefficients,
as well as thoseKi coefficients that haven as a common factor, and (ii) simplifying the
remainingKi coefficients, by settingn = 0 where appropriate. For an application of the
state space concept, the thus obtained set of ordinary differential equations is brought into the
form (15), in which the elements of the column matriz{Z} represent now the first twelve (or
the second twelve) of the transformations (14). Moreover,[K] is now a 12× 12 matrix. Its
elements are given explicitly in [12] and can alternatively be obtained upon settingn = 0
in the corresponding elements of the 12× 12 submatrix[T ] that appears in Equation (16)
([Y ] = 0). The remaining of the axisymmetric vibrations solution follows then the lines of the
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Table 1. Lowest axisymmetric frequency parameter,ω∗,
of eight-layered SS cylinders with a symmetric angle-ply
lay-up of the form[(±θ)2]s(h/R = 0·3, L/R = 1).

Present work Ref [14]

θ 2D 2D 2D 3D

(degrees) USDT PSD HSDT Elasticity

0◦ 1·0000 0·9604 0·9600 0·9531

15◦ 0·9865 0·9460 0·9456 0·9292

30◦ 0·9540 0·9140 0·9137 0·8739

45◦ 0·9185 0·8662 0·8660 0·8327

60◦ 1·0270 1·0230 1·0230 0·9938

75◦ 1·2670 1·2670 1·2670 1·2672

90◦ 1·0000 1·0000 1·0000 1·0000

Equations (17–21) in which, however, the maximum number of the distinct eigenvalues of the
matrix [K] should be dropped, from twenty four to twelve.

5. Numerical results and discussion

As has already been mentioned, all numerical results presented in this section are for cylinders
having both their edges simply supported (SS cylinders) or clamped (CC cylinders). Most of
the results shown were based on choices of the shape functions,81(z) and82(z), that are
consistent with the so-called parabolic shear-deformable shell theory (PSDT). For comparison
purposes, however, two more choices of the shape functions are also used. These are consistent
with the so-called uniform shear-deformable theory (USDT) and a shear-deformable theory
(HSDT) that uses shape functions of hyperbolic type [23]. In more detail, the shape functions
employed for each theory are as follows:

USDT: 81(z) = 82(z) = z,
PSDT: 81(z) = 82(z) = z(1− 4z2/h2),

HSDT: 81(z) = 82(z) = h sinh(z/h)− z sinh(1/2).

(22)

In some cases, which involve zero shape functions, the classical Love-type shell theory (CST)
has also been used for comparison purposes.

5.1. AXISYMMETRIC VIBRATIONS (n = 0)

For a certain family of eight-layered symmetric angle-ply laminated SS cylinders, Table 1
compares the lowest axisymmetric frequency parameter,

ω∗ = (ωR/π)√ρ/C66, (23)

obtained on the basis of the present shell-theory analysis, with the corresponding frequency
parameter obtained in [14] on the basis of exact three-dimensional elasticity analysis. The
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shells are particularly thick(h/R = 0·3) and highly reinforced, with every layer having the
following material properties,

EL/ET = 40, GLT /ET = 0·6, GT T /ET = 0·5, νLT = νT T = 0·25. (24)

The frequency parameters are presented for different fibre orientations,θ .
For so thick and highly reinforced cylinders, one should not expect from a two-dimensional

shell theory to produce accurate predictions of the natural frequencies and vibrations. How-
ever, it is observed that, despite the high reinforcement and thickness, the frequency predic-
tions that are based on either PSDT or HSDT are always reasonably close to the corresponding
elasticity predictions. Indeed, even the highest discrepancy, which is about 4·5% and occurs
when the fibres are oriented betweenθ = 30◦ andθ = 45◦, is still within the engineering
acceptable limit (5%). For smaller and, particularly, for higher values ofθ , these discrepancies
decrease continuously and take their smallest values forθ = 0◦ andθ = 90◦, respectively,
that is when the material of the cylinder becomes homogeneous orthotropic. It is of particular
interest to notice that these discrepancies become essentially negligible for very large values
of θ , that is when the reinforcement becomes predominantly circumferential. They indeed
disappear completely forθ = 90◦, that is when the high circumferential reinforcement is
expected to restrict considerably the axially symmetric motion of the cylinder. It should be
noted, in this respect, that even the USDT predicts the exact vibration frequency in this later
case. When the value ofθ is decreased, the USDT predictions become increasingly inaccurate,
with an exception theθ = 0◦ case, in which the obtained frequency is, however, still about
5% higher than its exact value.

Under these considerations, the USDT theory will not be used any further in this study.
Moreover, the HSDT seems to give always slightly better frequency predictions than the PSDT
does, but the improvement of the corresponding numerical results is practically negligible.
It is therefore concluded that there is no practical need of replacing the well-established
shape functions of the PSDT with the rather complicated shape functions of the HSDT [see
Equations (22)]. Hence, only numerical results based on the PSDT will be shown in what
follows.

It is of interest to notice, that the shape functions of all three versions of the shear-
deformable theory employed assume, erroneously, that the interlaminar stresses are discon-
tinuous at the material interfaces of the laminate. This should be directly connected with
the fact that, for the axisymmetric vibration problem considered, the relative errors of all
three versions are magnified betweenθ = 30◦ and θ = 45◦. Namely, in cases that the
discontinuity of the interlaminer stresses is magnified considerably while, at the same time,
the circumferential reinforcement is not high enough to restrict considerably the axisymmetric
motion of the cylinder. It is therefore concluded that a further improvement of the theory is
needed with regard to the implementation of new features and shape functions that could
guarantee the through-thickness continuity of interlaminar stresses in angle-ply laminates. It
should be noted, however, that this task is not as straightforward as it appears to be in the
case of cross-ply laminates [11, 12, 22] and, as such, it has been left as a subject for future
investigation.

Table 2 shows the first three axisymmetric frequency parameters,

ω = 100ωh
√
ρ/ET , (25)
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Table 2. First three axisymmetric natural frequency para-
meters,ω, of four-layered cylinders having a symmetric
lay-up of the form[+θ/− θ]s (h/R = 0·01, L/R= 0·1).

Boundary θ Vibration mode

conditions (degrees) I II III

SS 0◦ 11·700 22·211 33·261

45◦ 6·825 20·856 36·952

90◦ 5·700 11·433 21·565

CC 0◦ 17·880 22·214 37·540

45◦ 11·274 24·205 39·815

90◦ 7·640 15·130 22·214

for three values of the fibre-orientation angle of a four-layered symmetrically laminated cyl-
indrical shell subjected to both SS and CC edge boundary conditions. The shell is a thin one
(h/R = 0·01). The material properties in each of its layers are as follows:

EL/ET = 25, GLT /ET = 0·5, GT T /ET = 0·2, vLT = vT T = 0·25. (26)

Figure 1. Variation of the lowest axisymmetric fre-
quency parameterω, as a function ofθ , for several
L/R values of a SS cylindrical shell having a[+θ/−
θ]s lay-up(h/R = 0·1).

Figure 2. Variation of the lowest axisymmetric fre-
quency parameterω, as a function ofθ , for SS and CC
cylindrical shell having a[+θ/− θ]s lay-up(L/R =
1, h/R = 0·1).

For θ = 0◦ or θ = 90◦ the fibres are all aligned to the same direction forming, thus,
a homogeneous orthotropic shell. As was expected, the frequencies of CC shells are al-
ways higher than the corresponding frequencies of SS shells. It is of interest to note that,
for this type of thin and short shells(L/R = 0·1), the [45◦/ − 45◦]s arrangement yields
lower frequency parameters than the 90◦ homogeneous case, regardless of the edge boundary
conditions employed.
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Table 3. First five natural frequency parameters,ω̂, of four-layered cylinders
having a symmetric[+30◦/− 30◦]s lay-up(h/R0·01, L/R= 4).

SS CC

Mode Ref [17] CST PSDT Ref [17] CST PSDT

I 0·1232 0·12334 0·1232 0·1827 0·18185 0·1817

II 0·1314 0·13155 0·1313 0·1925 0·19206 0·1918

III 0 ·1675 0·16746 0·1753 0·2212 0·21984 0·2195

IV 0·1753 0·17553 0·1672 0·2295 0·22937 0·2285

V 0·2160 0·21607 0·2150 0·2811 0·28028 0·2799

For SS shells having the same thickness to radius ratio(h/R = 0·01), as well as the
same[+θ/ − θ]s material arrangement and properties, Figure 1 shows the variation of the
lowest axisymmetric frequency parameter,ω, as a function of both the fibre orientation and
the length to the radius ratio. It is observed that shells withL/R = 1 and L/R= 2 vibrate
with very similar lowest frequencies for all fibre orientation angles. Hence, as far as axisym-
metric vibrations of such thin laminates are concerned, the bound between angle-ply shells of
finite and practically infinite extent should not be placed much further thanL/R = 1. When
theL/R ratio is decreased, the frequency parameters increase. It can further be concluded
that, for this type of thin shells, the lowest axisymmetric frequency decreases when the fibre
orientation angle is increased from 0◦ to 90◦. As has already been seen, this situation differs
considerably from that of corresponding thick angle-ply laminated shells, for which the lowest
axisymmetric frequency occurs at aboutθ = 45◦.

This later observation is further justified from the results shown in Figure 2. There, for
moderately thick shells(h/R = 0·1, L/R = 1) having either SS or CC edge boundaries,
the variation of the lowest axisymmetric vibration frequency is shown as a function of the
fibre-orientation angle. Despite the fact that these shells are not as thick as those considered
in Table 1, the maximum axisymmetric vibration frequency occurs just aboveθ = 45◦,
regardless of the type of the edge boundary condition. As was expected, CC shells always
vibrate with higher frequencies than corresponding SS shells, but corresponding frequency
values appear to approach considerably towards the afore-mentioned minima of the two curves
(θ = 45◦) as well as at their corresponding maxima(θ = 75◦).

5.2. FLEXURAL VIBRATIONS (n 6= 0)

As has already been mentioned in the Introduction, the study of Naritaet al. [17] on flexural
vibrations of angle-ply laminated shells contains a substantial amount of relevant numerical
results. From this point of view, it is perhaps the most complete study that has appeared so far
on this subject. The model adopted in [17] was, however, based on a second-approximation
classical shell theory of the Flugge-type [18] and the analysis was based on the application of
the Ritz method to the corresponding energy functional. Due to the extensive amount of results
presented and discussed in [17], it was found more interesting to compare corresponding res-
ults based on the two different approaches (the state space concept and the Ritz method [17])
than to produce and discuss new results in this study. The good agreement that was always
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Table 4. First five natural frequency parameters,ω̂, of four-layered cylinders
having a symmetric[+45◦/− 45◦]s lay-up(h/R = 0·01, L/R= 4).

SS CC

Mode Ref [17] CST PSDT Ref [17] CST PSDT

I 0·1193 0·11953 0·1190 0·1789 0·17604 0·1757

II 0·1253 0·12544 0·1250 0·1951 0·19375 0·1932

III 0 ·1733 0·17315 0·1728 0·2444 0·23833 0·2380

IV 0·2204 0·22042 0·2200 0·2474 0·24646 0·2450

V 0·2362 0·23556 0·2350 0·3168 0·31517 0·3145

Table 5. First five natural frequency parameters,ω̂, of four-layered cylinders
having a symmetric[+60◦/− 60◦]s lay-up(h/R = 0·01, L/R= 4).

SS CC

Mode Ref [17] CST PSDT Ref [17] CST PSDT

I 0·1093 0·10943 0·1093 0·1796 0·17804 0·1775

II 0·1533 0·15323 0·1530 0·1796 0·17804 0·1775

III 0 ·1533 0·15324 0·1530 0·1894 0·18503 0·1850

IV 0·2283 0·12805 0·2271 0·3136 0·31105 0·3100

V 0·2392 0·24004 0·2390 0·3196 0·31444 0·3144

observed was very convincing for the reliability of both approaches. This is demonstrated in
Tables 3–5, where some comparisons are shown of corresponding numerical results.

Tables 3–5 compare the first five flexural frequency parameters,

ω̂ = ωR√ρ/ET , (27)

of four-layered thin cylinders(h/R = 0·01,L/R = 4) having both SS and CC edge bound-
aries and a symmetric lay up of the form[+θ/ − θ]s . Each layer has the following material
properties,

EL/ET = 20, GLT /ET = 0·65, GT T /ET = 0·2, νLT = νT T = 0·25, (28)

while the fibre orientation angle varies from 30◦ to 60◦. Both CST and PSDT have been used
for the results obtained on the basis of the state space concept. In all cases considered, both the
frequencies and the circumferential mode numbers (given as superscripts of the CST results)
were found to be in excellent agreement with the corresponding results due to Naritaet al.
[17]. As was expected, however, the PSDT frequency parameters were always slightly lower
than those predicted by either of the classical shell theories, regardless of the type of the
edge boundary conditions. It is expected that, when either the shell thickness or the material
reinforcement is increased, this difference observed between corresponding frequencies based
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on CST and PSDT will increase, with the results of PSDT being always closer to the exact
results that could be obtained by means of a perspective solution of the corresponding equation
of three-dimensional elasticity.

6. Conclusions

This paper studies both the axisymmetric and the flexural vibrations of finite, closed, circular
cylindrical shells, made of one or more monoclinic layers and subjected to different sets of
edge boundary conditions. The study and the analysis were based on the Love-type version
of a unified shear-deformable shell theory and the state space concept, respectively. The state
space concept is an exact method for solving ordinary differential equations with constant
coefficients. In dealing with free vibrations of finite, closed, cylindrical shells, the method
has not been applied previously for a more complicated material arrangement than that of a
cross-ply lay-up.

As was reported in previous studies that dealt with vibrations of cross-ply laminates, the
straightforward application of the method may cause severe numerical instabilities. It may be
noted, in this respect, that neither in the present investigation, in which the angle-ply lay-up
has essentially doubled the size of the frequency eigendeterminant, the numerical behaviour
of the solution was found to be always stable. If necessary, however, some modified versions
of the method that eliminated the numerical instabilities for cross-ply laminates [10, 24, 25]
could be extended and used in order to further take care of any similar instabilities involved
in the free vibration analysis of angle-ply laminated cylinders.

The unified theoretical formulation employed allowed the comparison of numerical results
that were based on several types of shear-deformable shell theories, with corresponding results
based on a three-dimensional solution. Among these shear-deformable theories employed, the
uniform shear-deformable theory provided the poorest frequency predictions. The well-known
parabolic shear-deformable shell theory did not yield the best frequency predictions, but its
results were always very close to the best shell-theory predictions obtained. As a result, it was
concluded that there was not an immediate practical need for dismissing it or replacing it.

It was pointed out, however, that all the shear-deformable theories employed assumed,
erroneously, that the interlaminar stresses are discontinuous at the material interfaces of the
angle-ply laminate. This was further connected with the fact that the relative errors, with
respect to the corresponding three-dimensional elasticity results, were magnified considerably
for certain combinations of the material reinforcement and the fibre angle. It was therefore
concluded that a further investigation is needed towards the improvement of the theory. This
should be dealing with the implementation of new features and shape functions that could
guarantee the through-thickness continuity of interlaminar stresses in angle-ply laminates.
The implementation of these features, which is already available in cross-ply laminates, is
not straightforward for angle-ply laminates. It may cause an increase in the number of the
degrees of freedom involved in the theoretical modelling, with corresponding consequences
being transferred onto the analytical and the numerical treatment of the problem considered.
Hence, it was suggested and left as a subject for future research investigations.
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Appendix A

The components of the 5× 5 matrix [L] appearing in Equation (11) are given as follows:

L11 = A11(),xx + 2A16(),xs + A66(),ss − ρ0(),t t,

L12 = a16(),xx + (a12+ a66)(),xs + a26(),ss,

L13 = −B11(),xxx − 3B16(),xxs + b1(),xss − B26(),sss

+A12(),x/R + A26(),s/R + ρ1(),xt t ,

L14 = B ′111(),xx + 2B ′161(),xs + B ′661(),ss − ρ−11
0 (),t t ,

L15 = B ′162(),xx + b′2(),xs + B ′262(),ss,

L22 = ā66(),xx + 2ā26(),xs + ā22(),ss − (ρ0+ 2ρ1/R + ρ2/R
2)(),t t ,

L23 = −b16(),xxx − (2b66+ b12)(),xxs − 3b26(),xss − b22(),sss

+a26(),x/R + a22(),s/R + (ρ2/R − ρ1)(),st t,

L24 = b′161(),xx + (b′121+ b′661)(),xs + b′261(),ss,

L25 = b′662(),xx + 2b′262(),xs + b′222(),ss − (ρ̄21
0 + ρ̄21

1 /R)(),t t,

L33 = D11(),xxxx +D22(),ssss + 4D16(),xxxs + 2d1(),xxss + 4D26(),xsss

−2B12(),xx/R − 4B26(),xs/R − 2B22(),ss/R + A22()/R
2

+ρ0(),t t − ρ2(),sst t − ρ2(),xxt t,

L34 = −D111(),xxx − 3D161(),xxs − d ′1(),xss −D261(),sss

+B121(),x/R + B261(),s/R + ρ̄11
1 (),xt t ,

L35 = −D162(),xxx − 3D262(),xss − d ′2(),xxs −D222(),sss

+B262(),x/R + B222(),s/R + ρ̄21
1 (),st t ,

L44 = D1111(),xx +D6611(),ss +D1611(),xs − A5511()− ρ̄21
0 (),t t ,

L45 = D1612(),xx +D2612(),ss + d ′′3 (),xs − A4512(),

L55 = D6622(),xx +D2222(),ss + 2D2622(),xs − A4422()− ρ̄22
0 (),t t ,

(A1)

where
(aij , bij ) = [(Aij + Bij /R), (Bij +Dij/R)],
b′ijk = Bijk +Dijk/R, āij = aij + bij /R,

(A2)

and
b1 = B12+ 2B66, d1 = D12+ 2D66,

b′i = B12i+ 2B66i, d
′
i = D12i+ 2D66i, d

′′
3 = D1212+D6612.

(A3)

Appendix B

Upon inserting expressions (13) into Equations (11) and then collecting the coefficients of the
sine and the cosine terms, one obtains two coupled sets of ordinary differential equations with
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respect to the axial coordinate parameterx. The first set, obtained by setting the coefficients
of the sine terms equal to zero, can be brought into the following form:

ūI,xx = K1ū
I +K2v̄

I +K3v̄
I
,xx +K4w̄

I
,x +K5w̄

I
,xxx +K6ū

I
1 +K7ū

I
1,xx

+K8v̄
I
1 +K9v̄

I
1,xx + P1ū

I I
,x + P2v̄

I I
,x + P3w̄

II + P4w̄
II
,xx + P5ū

I I
1,x + P6v̄

I I
1,x,

v̄I,xx = K10ū
I +K11ū

I
,xx +K12v̄

I +K13w̄
I
,x +K14w̄

I
,xxx +K15ū

I
1 +K16ū

I
1,xx

+K17v̄
I
1 +K18v̄

I
1,xx + P7ū

I I
,x + P8v̄

I I
,x + P9w̄

11+ P10w̄
II
,xx + P11ū

I I
1,x + P12v̄

I I
1,x,

w̄I,xxxx = K19ū
I
,x +K20ū

I
,xxx +K21v̄

I
,x +K22v̄

I
,xxx +K23w̄

I +K24w̄
I
,xxx +K25ū

I
1,x

+K26ū
I
1,xxx +K27v̄

I
1,x +K28v̄

I
1,xxx + P13ū

I I + P14ū
I I
,xx + P15v̄

I I + P16v̄
I I
,xx

+P17w̄
II
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II
,xxx + P19ū

I I
1 + P20ū

I I
1,xx + P21v̄
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1 + P22v̄

I I
1,xx,

ūI1,xx = K29ū
I +K30ū

I
,xx +K31v̄

I +K32v̄
I
,xx +K33w̄

I
,x +K34w̄

I
,xxx +K35ū

I
1 +K36ū

I
1,xx

+K37v̄
I
1,xx + P23ū
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II
,xx + P27ū

I I
1,x + P28v̄

I I
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v̄I1,xx = K38ū
I +K39ū

I
,xx +K40v̄

I +K41v̄
I
,xx +K42w̄

I
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I
,xxx +K44ū
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1 +K45ū
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I
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I I
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II + P32w̄
II
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I I
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(B1)

while the second set is given as follows:

ūI I,xx = K1ū
I I +K2v̄

I I +K3v̄
I I
,xx +K4w̄

II
,x +K5w̄

II
,xxx +K6ū

I I
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I I
1 +K9v̄

I I
1,xx − (P1ū
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I
1,x + P6v̄

I
1,x),

v̄II,xx = K10ū
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(B2)

Evidently, the appearing coefficientsKi andPi , are the same constants in both sets of equa-
tions. These are given below. It should be emphasized that Equations (B2) can be obtained
from Equations (B1) by interchanging the superscriptsI and II in the unknown functions
involved and by changing the signs of all coefficientsPi.

The constant coefficients that appear in both sets of Equations (B1) and (B2) are given as
follows:

1st Equation:
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K1 = −(A66n2+ ρ0ω
2)/A11, K2 = −a26n2/A11,

K3 = −a16/A11, K4 = −(A12/R − b1n2− ρ1ω
2)/A11,

K5 = B11/A11, K6 = (B661n2+ ρ̄11
0 ω

2)/A11,

K7 = −B111/A11, K8 = −B262n2/A11,

K9 = −B162/A11, P1 = −2A16n1/A11,

P2 = −(a12+ a66)n1/A11, P3 = −(A26n1/R − B26n3)/A11,

P4 = 3B16n1
/
A11, P5 = −2B161n1/A11,

P6 = −b′2n1/A11;

(B3)

2nd Equation:

K10 = −a26n2/ā66, K11 = −a16/ā66,

K12 = −(ā22n2+ I21ω
2)/ā66, K13 = −(a26/R − 3b26n2)/ā66,

K14 = b16/ā66, K15 = −b′261n2/ā66,

K16 = −b′161/ā66, K17 = −(b′222n2+ I23ω
2)/ā66,

K18 = −b′662/ā66, P7 = −(a12+ a66)n1/ā66,

P8 = −2ā26n1/ā66, P9 = −[a22n1/R − b22n3+ I22n1ω
2]/ā66,

P10 = (2b66+ b12)n1/ā66, P11 = −(b′121+ b′661)n1/ā66,

P12 = −2b′262n1/ā66;

(B4)

3rd Equation:

K19 = (b1n2− A12/R + ρ1ω
2)/D11, K20 = B11/D11,

K21 = (3b26n2− a26/R)/D11, K22 = b16/D11,

K23 = (2B22n2/R −D22n4− A22/R
2+ I20ω

2)/D11, K24 = (−2d1n2+ 2B12/R − ρ2ω
2)/D11,

K25 = (d ′1n2− B121/R + ρ̄I I1 ω
2)/D11, K26 = D111/D11,

K27 = (3D262n2− B262/R)/D11, K28 = D162/D11,

P13 = (B26n3− A26n1/R)/D11, P14 = 3B16n1/D11,

P15 = [b22n3− a22n1/R − I22ω
2n1]/D11, P16 = (b12+ 2b66)n1/D11,

P17 = 4(B26n1/R −D26n3)/D11, P18 = −4D16n1/D11,

P19 = (D261n3− B261n1/R)/D11, P20 = 3D161n1/D11,

P21 = (D222n3− B222n1/R + ρ̄21
1 ω

2n1)/D11, P22 = d ′2n1/D11;

(B5)
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4th Equation:

K29 = −(B661n2+ ρ̄11
0 ω

2)/D1111, K30 = −B111/D1111,

K31 = b′261n2/D1111, K32 = −b′161/D1111,

K33 = −(B121/R − d ′1n2− ρ̄11
1 ω

2)/D1111, K34 = D111/D1111,

K35 = −(D661n2− A5511+ ρ̄12
0 ω

2)/D1111, K36 = −(D2612n2− A4512)/D1111,

K37 = −D1612/D1111, P23 = −2B161n1/D1111,

P24 = −(b′121+ b′661)n1/D1111, P25 = −(B261n1/R −D261n3)/D1111,

P26 = 3D161n1/D1111, P27 = −2D1611n1/D1111,

P28 = −d ′′3n1/D1111;

(B6)

5th Equation:

K38 = −B262n2/D6622, K39 = −B162/D6622,

K40 = −(b′222n2+ I23ω
2)/D6622, K41 = −b′662/D6622,

K42 = −(B262/R − 3D262n2)/D6622, K43 = D162/D6622,

K44 = −(D2612n2− A4512)/D6622, K45 = −D1612/D6622,

K46 = −(D2222n2− A4422+ ρ̄22
0 ω

2)/D6622,

P29 = −b′2n1/D6622, P30 = 2b262n1/D6622,

P31 = −(B2222n1/R −D2222n3− ρ̄21
1 ω

2n1)/D6622, P32 = d ′2n1/D6622,

P33 = −d ′′3n1/D6622, P34 = −2D2622n1/D6622,

(B7)

where

n1 = n/R, n2 = −(n/R)2,
n3 = −(n/R)3, n4 = (n/R)4,

(B8)

and

I20 = ρ0− n2ρ2, I21 = ρ0+ (2ρ1+ ρ2/R)/R,

I22 = ρ1− ρ2/R, I23 = ρ̄21
0 + ρ̄21

1 /R.
(B9)
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